Molecular Clumps & Cores in Colliding Flows

Michael Weis^{*}, S. Walch^{*}, D. Seifried^{*}, S. Ganguly

*1st Institute of Physics, University of Cologne

Simulations

- Code: Flash AMR
- Model: Two head-on flows of WNM
- Slightly supersonic inflow Initial B-field along flow 0.01 μG | 1.25 μG | 2.5 μG | 5 μG

Clump & Core Analysis: Full Virial Theorem^{1,2}

- Evaluation of:
 - Volume & surface terms: Kinetic, Thermal, Magnetic
 - Gravitational energy (inc. tidal) & Eulerian surface flux

- Tree-based (self-)gravity
- Non-eq. chemistry (H⁺, H, H2, C⁺, CO)
- ~1600 AU resolution ((32 pc)² × 128 pc box)

3D Clump & Core Detection

- 3D molecular clumps:
 - Connected molecular region
 - CO-abund. > 10^{-4} (~70% saturation)
- 3D cores:
 - Connected shielded space
 - Inside 3D clump
 - $-A_{V,3D} > 8 \text{ mag}$
- Discard object if < 30 grid cells
- Not all clumps host cores!

Core Analysis: Angular Momentum

• Evaluation of the 3D core's specific angular momentum j (Abs. value, radially binned)

• Results:

- -Slopes j~r^α (< 3 M_☉): ~1.55 (Similar to obs. ^{3,4,5})
- -Scatter connected to geometric complexity

Rotation Radius r [au]

Contact

Michael Weis 1st Institute of Physics University of Cologne

weis@ph1.uni-koeln.de

References

1 McKee, C. F. & Zweibel, E. G. (1992) 2 Dib, S., Kim, J., Vazquez-Semadeni, E. et al. (2007) 3 Ohashi, N., Hayashi, M., Ho., P. T. P. et al (1997) 4 Belloche A. (2013) 5 Pineda J., Zhao, B., Schmiedeke, A. et al. (2019)